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Abstract

Vision-and-Language Navigation (VLN) requires agents to interpret natural lan-
guage instructions for spatial reasoning, yet evaluating instruction quality remains
challenging when agents fail. This gap highlights a critical need for a principled un-
derstanding of why navigation instructions fail. Addressing this question requires
a systematic analysis of failure patterns in spatial reasoning tasks. To address this,
we first present a taxonomy of navigation instruction failures that clusters failure
cases into four categories: (i) linguistic properties, (ii) topological constraints, (iii)
agent limitations, and (iv) execution barriers. We then introduce a dataset of over
450 annotated failure navigation traces collected from GROKE, a vision-free evalu-
ation framework that utilizes OpenStreetMap (OSM) data. Our dataset outlines the
failure dynamics in spatial grounding to guide the development of better instruction
generation, evaluation systems, and navigation agents. Our analysis of failure traces
across GROKE demonstrates that agent limitations (74.2%) constitute the dominant
error category, with stop-location errors and planning failures as the most frequent
subcategories. The dataset and taxonomy together provide actionable insights that
enable instruction generation systems to identify and avoid under-specification pat-
terns while allowing evaluation frameworks to systematically distinguish between
instruction quality issues and agent-specific artifacts.

O https://fuzsh.github.io/lost/

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse language
understanding tasks, yet their spatial reasoning abilities remain fundamentally limited. Recent
benchmarks reveal that even state-of-the-art (SOTA) models experience performance degradation
ranging from 42% to over 80% as spatial task complexity increases [1]. This limitation becomes
particularly critical in embodied Artificial Intelligence (AI) applications, where models must translate
natural language navigation instructions into executable spatial behaviors. The REM [20] benchmark
shows that advanced reasoning models still underperform humans on spatial tasks, particularly when
requiring viewpoint-independent reasoning and object tracking across trajectories. These findings
indicate that the grounding problem between linguistic descriptions and spatial actions remains
largely unresolved.

In VLN, this gap manifests through systematic failures in instruction following. Contemporary VLN
systems achieve moderate success rates on standard benchmarks, yet comprehensive evaluations
reveal persistent weaknesses. EmbodiedBench [22] demonstrates that multimodal language models
excel at high-level planning but struggle with low-level spatial control, achieving only 28.9% average
success across embodied tasks. More concerning, recent studies show that SOTA VLN methods
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2. Related Work

experience up to 25% success rate drops when evaluated with erroneous instructions [19], revealing
fundamental fragility in instruction-following systems. This fragility raises a critical question: when
navigation fails, is the failure attributable to agent limitations, instruction quality, or their interaction?

Existing failure analysis frameworks predominantly focus on agent-level diagnostics. Recent work
has introduced taxonomies for perception errors, reasoning failures, and planning breakdowns
in embodied systems [9, 22]. VLN evaluation has begun incorporating step-level error analysis
to distinguish between navigation decision failures and generation errors [25]. However, these
approaches assume that navigation instructions themselves are correct and complete. The instruction-
level failure modes, such as linguistic ambiguity, topological inaccuracy, or insufficient spatial detail,
remain largely unexamined. This represents a significant gap in understanding navigation system
failures, as instruction quality fundamentally determines navigability independent of agent capability.

Vision-free evaluation frameworks offer an opportunity to isolate instruction properties from percep-
tual challenges. GROKE [16], a graph-to-text evaluation framework that converts OSM topology
into structured textual representations for LLM-based reasoning, shows that graph-based reasoning
over OSM representations can evaluate navigation instructions without visual perception. In GROKE,
the navigation instruction is divided into multiple navigation steps, and the landmarks are detected
using a specialized agent. For each step, the visible area is constructed from the OSM graph and fed
as context to the LLM, which then attempts to execute the instruction step by navigating through
the graph representation. By removing computer vision from the evaluation loop, such approaches
enable direct assessment of whether instructions contain sufficient, correct, and actionable spatial
information. This capability underpins systematic instruction-level failure analysis that cannot be
achieved through vision-dependent evaluation methods.

By removing computer vision from the evaluation loop, these approaches enable direct assessment
of whether instructions contain sufficient and actionable spatial information, supporting systematic
failure analysis not achievable through vision-dependent methods.

Contributions. We propose instruction-level failure understanding by systematically analyzing
navigation instruction failures. Our contributions are as follows: (i) we collect and analyze 492
navigation failure traces from GROKE’s evaluation of Map2Seq [14] test sets, representing 35.14% of
evaluated instructions; (ii) we develop a hierarchical four-axis categorization framework spanning lin-
guistic properties, topological constraints, agent-specific limitations, and execution-level breakdowns;
(iii) we reveal that agent limitations represent the dominant error dimension, with stop-location errors
and planning failures as the most frequent subcategories; and (iv) we derive six actionable design
implications for improving vision-free navigation systems based on the identified failure patterns.

The paper proceeds as follows: Section 2 reviews related work, Section 3 presents our taxonomy and
annotation methodology, Section 4 discusses results, and Section 5 concludes.

2 Related Work

Language-Guided Navigation and Spatial Reasoning. The effectiveness of LL.Ms in navigation
is fundamentally dependent on how spatial information is encoded and represented. Contemporary
approaches have attempted to address this through explicit reasoning and specialized architectures.
NavGPT [26] emphasizes explicit reasoning processes, while VELMA [15] focuses on the verbaliza-
tion embodiment of LLM agents in street-view environments. Building on these foundations, other
methods have optimized spatial representations: MapGPT [5] demonstrates the value of map-guided
prompting combined with adaptive path planning, and STMR [7] employs a semantic-topo-metric
representation that combines semantic labels with topological connectivity to guide aerial navigation.

However, recent studies indicate that spatial reasoning capabilities deteriorate rapidly as problem
scale and compositional complexity increase. Martorell [12] reveals that while models exhibit
moderate competence in simple, direct spatial tasks, they struggle with complex compositional
reasoning in grid-world contexts. Similarly, REM [20], a benchmark evaluating embodied spatial
reasoning through multi-frame trajectories, highlights systematic limitations in spatial understanding.
Addressing these representation gaps, GROKE [16] utilizes a vision-free evaluation framework on
OSM-derived spatial graphs to demonstrate that structured JSON and textual formats substantially
outperform the grid-based representations often used in earlier iterations.



3. Failure Taxonomy & Annotation.

Despite these advances, understanding of failure modes in navigation instruction evaluation remains
less explored, limiting our ability to improve instruction generation and evaluation frameworks.

Related Datasets and Failure Studies. Systematic failure analysis has gained increasing attention
across Al research domains [3, 13, 17]. However, in robotics and embodied Al existing VLN research
provides only anecdotal failure examples or limited error categorization. Researchers analyze failure
modes in VLN or Vision-and-Language Action (VLA) models for robotic manipulation [10, 21, 22].
FailSafe [10] proposes a systematic failure generation and recovery framework that categorizes manip-
ulation failures into three fundamental modes (translation, rotation, and no-ops failures) and enables
VLA models to reason about and recover from errors during task execution. EmbodiedBench [22],
a benchmark for evaluating multi-modal foundation models on embodied tasks, reveals systematic
limitations in spatial understanding and action execution.

VLM4VLA [23] shows that initializing models with VLMs provides consistent advantages compared
to training from scratch. However, their findings reveal that a VLM’s performance on general tasks
does not reliably indicate its effectiveness for downstream tasks. The research establishes that
the vision encoder represents the primary performance bottleneck in this domain. Feng et al. [6]
further reinforce this bottleneck by exposing the fragility of visually prompted benchmarks. They
show that minor non-semantic factors can drastically alter accuracy, including visual marker design
characteristics (such as color and shape) and low-level inference details like JPEG compression.

Further related efforts aim to catalog challenges in human-agent interaction [2] and summarize
failures for specific task items by attributing them to particular agents and error steps [24], but focus
on interaction patterns or task-specific code debugging. While MAST [4] pioneered empirically
derived datasets and taxonomies for multi-agent system failure patterns, our work represents, to our
knowledge, the first such effort focused specifically on navigation instruction failures.

3 Failure Taxonomy & Annotation.

This section describes the hierarchical taxonomy we developed to categorize navigation failures
and the annotation protocol we followed to label the dataset. First, we explain the data source and
failure instance collection from GROKE’s evaluation of Map2Seq. Second, we present the taxonomy
structure and its four main dimensions. And third, we describe the annotation process, inter-annotator
agreement analysis, and disagreement resolution procedures.

Data Collection. We analyzed navigation failure traces from GROKE, representing the environment
as a spatial graph where nodes correspond to decision points and edges represent navigable paths. The
system processes natural language instructions through multi-step reasoning, extracting landmarks
and spatial relations to construct an executable route plan. We define failures as cases where the
agent’s stopping location exceeds 25 meters from the target destination, a threshold commonly used
in embodied navigation benchmarks to distinguish successful task completion from spatial errors.

Hierarchical Taxonomy. We developed a hierarchical taxonomy by analyzing failure patterns and
agentic system design methodologies reported in prior navigation research [4, 11, 15, 16, 18, 22, 25].
By examining documented error cases and failure modes across different navigation frameworks, we
identified recurring patterns that informed our category design. The resulting taxonomy represents an
original classification scheme that consolidates insights from the literature while introducing new
subcategories specific to vision-free navigation with graph-based spatial reasoning.

The taxonomy covers four dimensions: Linguistic (L), Topological (T), Agent (4), and Execution (E).
Each dimension includes multiple subcategories designed to capture different types of failure modes
and ambiguities that occur during navigation tasks. Figures 1-2 present the complete breakdown of
categories and subcategories. Note that we excluded the vision-related error category from the Agent
(A) dimension because our traces operated in a vision-free setting.

Data Annotation Three expert annotators (i.e., authors) with backgrounds in computational linguis-
tics and spatial reasoning participated in the annotation process. For the data annotation process,
annotators received the reasoning for each step, the identified sub-goals, all extracted POIs, the map
with the annotated path, the graph network showing the traversed path with marked POIs, and the
hierarchical taxonomy.
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Figure 1: Linguistic and topological failure categories with subcategory definitions.
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Figure 2: Agent limitations and execution failure categories with subcategory definitions.



4. Results & Discussions

We categorized navigation instructions at three levels: the top level distinguishes among L, T, A, and
E error types; the mid-level groups errors into primary subcategories within each main type (e.g., L1
and L2 for linguistic errors); and the leaf level provides the most fine-grained classification of specific
error instances (e.g., L1.1 and L1. 2 as subcategories of L1). We measured inter-annotator agreement
using Cohen’s kappa () as the evaluation metric. The mid-level category achieved x = 0.68, which
falls into the “Substantial” agreement range according to [8]. This demonstrates strong annotation
reliability at this critical hierarchical level.

For the resolution of annotation disagreements, we applied a hierarchical approach based on the
disagreement level. When annotators disagreed at the leaf level of the hierarchy, we assigned the
deepest common ancestor as the final label. When disagreements occurred at the top-level or mid-
level categories, we used a third expert adjudicator to resolve them. The final annotated dataset can
be explored through our project page https://fuzsh.github.io/lost/explorer-tool.

4 Results & Discussions

As shown in Table 1, our analysis of 492 failed navigation instances reveals that errors are predom-
inantly attributed to agent limitations, appearing in 74.2% of all cases. Execution and behavioral
failures follow with 46.5%, while linguistic properties account for 23.2%, and topological constraints
contribute to 12.4% of failures. Notably, half of all samples exhibit errors spanning multiple dimen-
sions, indicating that navigation failures frequently result from compounded issues rather than isolated
problems. This distribution suggests that while instruction quality and environmental complexity
play important roles, the primary bottleneck lies in the agent’s internal processing capabilities.

Table 1: Taxonomy of outdoor navigation agent failures across four dimensions.

I Linguistic | Topological | Agent | Execution
|| Code % of Ling. | Code % of Topo. | Code % of Agent | Code % of Exec.
L1 24.6% Tl 18.0% Al 27.4% El 0.4%
é» L2 42.1% T2 4.9% A2 3.3% E2 32.8%
S L3 5.3% T3 1.6% A3 6.6% E3 3.9%
§ L4 6.1% T4 4.9% A4 8.8% E4 49.8%
& L3 7.9% TS 73.8% AS 49.9% E5 39.3%
[ L6 1.8% - A6 32.1% -
= L7 14.9% - A7 0.8% -
5 L8 14.0% - A8 3.0% -
L9 0.9% - - -
Prevalence | 23.2% 124% \ 74.2% \ 46.5%

Note: Critical (dark red), High (orange), Medium (blue), Low (gray). Rate: % within dimension.
Refer to Figures 1-2 for code details.

Agent limitations represent the most prevalent source of failures. Within this dimension, stop-location
errors (A5) constitute the dominant failure mode, occurring in 49.9% of agent-related failures (182
instances). These errors manifest when agents either overshoot their destination, stop prematurely
before reaching the described location, or fail to recognize landmarks indicating the stopping point.
Planning and reasoning errors (A6) follow at 32.1% (117 instances), encompassing cases where agents
exhibit goal confusion, cascading planning failures, or premature task termination. POI grounding
failures (A1) account for 27.4% (100 instances), representing situations where fuzzy string matching
or semantic similarity computations fail to correctly identify landmarks mentioned in the instructions.

Execution failures represent the second most common error dimension, appearing in 46.5% of all
annotated samples. Timing and temporal errors (E4) dominate this category at 49.8% (114 instances
within the execution dimension), occurring when agents perform correct actions in incorrect sequences
or with inappropriate timing. A representative example involves an agent that correctly analyzed
instructions and map data, noting that “poi_x" is to its left with a traffic light behind it, but failed
because the relevant POIs had already been passed during navigation.

Linguistic errors contribute to 23.2% of navigation failures, highlighting the critical importance of
instruction quality. Over-specification (L2) represents the most common linguistic failure mode at
42.1% (48 instances), occurring when instructions reference landmarks not visible or not present in
the map data. This includes visual-only features such as details not captured in OSM.
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5. Final Remarks

Topological errors appear in 12.4% of failures, with junction complexity (T5) representing the majority
with 73.8% (45 instances). Multi-way intersections and offset intersections with non-perpendicular
streets create exponential action space complexity that challenges vision-free navigation systems.
For example, one annotation noted that understanding “This road will merge with another road. You
will take a slight right to stay on the road” requires a better understanding of the surrounding area,
suggesting that visual input may be necessary for such topologically complex scenarios.

Implications for System Design. Our error analysis reveals several actionable insights for improving
vision-free navigation systems. We organize these implications according to the primary failure
dimensions identified in our taxonomy.

(1) Spatial Representation Limitations: A recurring issue involves the mismatch between how
geographic features are represented in OSM and their real-world spatial extent. Large areas such as
parks are often encoded as single point coordinates rather than polygonal regions, which leads agents
to treat expansive landmarks as precise locations. Similar problems occur with corner landmarks
located on the opposite side of the street, where the point representation fails to capture the spatial
relationship between the navigator and the landmark.

(2) Ambiguous Terminology Interpretation: Certain navigation terms, such as “block” and “T-
intersection” introduce systematic interpretation challenges. Our analysis indicates that even human
annotators occasionally disagree on the intended meaning of these expressions. This suggests that
navigation systems would benefit from explicit disambiguation mechanisms or contextual reasoning
modules that can resolve such terminological ambiguity.

(3) Landmark Detection and Matching: Groke’s current architecture relies on LLM-based landmark
extraction from navigation instructions and then fuzzy matching. A notable example involves traffic
lights, which appear frequently in the Map2seq dataset. While instructions typically reference “light”,
the corresponding OSM nodes use the tag “traffic_signal.” Standard fuzzy string matching fails to
bridge this lexical gap. Implementing improved semantic mappings between instruction vocabulary
and OSM tag conventions could substantially reduce planning, reasoning, and stop-location errors.

(4) Action Timing at Intersections: We identified cases where agents misinterpret the spatial context
for executing actions. When positioned at an intersection with a traffic light and receiving an
instruction such as “turn right at the light,” agents sometimes execute the turn immediately at the
current position. However, the intended interpretation often requires advancing to the next traffic
light before performing the action. This finding highlights the need for better temporal grounding of
action directives for the first action.

(5) Junction Complexity Handling: The current sub-goal detection mechanism discards information
about turn sharpness and angle, which proves insufficient for complex junctions. Enhancing the
sub-goal extraction to preserve angular information would enable more informed decision-making
at multi-way intersections. Alternatively, developing a richer representation scheme for complex
junctions could improve the model’s ability to distinguish between multiple exit options.

(6) Stop-Location Refinement: Given that many stop-location errors result in positions that are
approximately correct, a practical improvement would involve incorporating visual input specifically
for the final navigation steps. Alternatively, providing richer contextual information about surrounding
POIs during the last-step reasoning phase could improve stopping accuracy without requiring full
visual perception throughout the navigation task.

5 Final Remarks

We introduced a hierarchical taxonomy for categorizing navigation instruction failures across four
dimensions and presented an annotated dataset of failure traces from vision-free evaluation settings.
Our analysis revealed that agent limitations, particularly stop-location and planning errors, constitute
the dominant failure sources, while half of all failures exhibit multi-dimensional error patterns. These
findings provide actionable insights for improving instruction generation systems and evaluation
frameworks. Although our analysis is limited to a single evaluation framework and excludes vision-
dependent failure modes, the taxonomy and dataset offer a foundation for developing more robust
navigation systems and for future research on automated failure diagnosis.
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